\(\int \frac {x^4}{a x^2+b x^3+c x^4} \, dx\) [12]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 70 \[ \int \frac {x^4}{a x^2+b x^3+c x^4} \, dx=\frac {x}{c}-\frac {\left (b^2-2 a c\right ) \text {arctanh}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right )}{c^2 \sqrt {b^2-4 a c}}-\frac {b \log \left (a+b x+c x^2\right )}{2 c^2} \]

[Out]

x/c-1/2*b*ln(c*x^2+b*x+a)/c^2-(-2*a*c+b^2)*arctanh((2*c*x+b)/(-4*a*c+b^2)^(1/2))/c^2/(-4*a*c+b^2)^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {1599, 717, 648, 632, 212, 642} \[ \int \frac {x^4}{a x^2+b x^3+c x^4} \, dx=-\frac {\left (b^2-2 a c\right ) \text {arctanh}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right )}{c^2 \sqrt {b^2-4 a c}}-\frac {b \log \left (a+b x+c x^2\right )}{2 c^2}+\frac {x}{c} \]

[In]

Int[x^4/(a*x^2 + b*x^3 + c*x^4),x]

[Out]

x/c - ((b^2 - 2*a*c)*ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/(c^2*Sqrt[b^2 - 4*a*c]) - (b*Log[a + b*x + c*x^2]
)/(2*c^2)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 717

Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e*((d + e*x)^(m - 1)/(c*(
m - 1))), x] + Dist[1/c, Int[(d + e*x)^(m - 2)*(Simp[c*d^2 - a*e^2 + e*(2*c*d - b*e)*x, x]/(a + b*x + c*x^2)),
 x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*
e, 0] && GtQ[m, 1]

Rule 1599

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(m +
 n*p)*(a + b*x^(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, m, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] &
& PosQ[r - p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^2}{a+b x+c x^2} \, dx \\ & = \frac {x}{c}+\frac {\int \frac {-a-b x}{a+b x+c x^2} \, dx}{c} \\ & = \frac {x}{c}-\frac {b \int \frac {b+2 c x}{a+b x+c x^2} \, dx}{2 c^2}+\frac {\left (b^2-2 a c\right ) \int \frac {1}{a+b x+c x^2} \, dx}{2 c^2} \\ & = \frac {x}{c}-\frac {b \log \left (a+b x+c x^2\right )}{2 c^2}-\frac {\left (b^2-2 a c\right ) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x\right )}{c^2} \\ & = \frac {x}{c}-\frac {\left (b^2-2 a c\right ) \tanh ^{-1}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right )}{c^2 \sqrt {b^2-4 a c}}-\frac {b \log \left (a+b x+c x^2\right )}{2 c^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.04 \[ \int \frac {x^4}{a x^2+b x^3+c x^4} \, dx=\frac {x}{c}+\frac {\left (b^2-2 a c\right ) \arctan \left (\frac {b+2 c x}{\sqrt {-b^2+4 a c}}\right )}{c^2 \sqrt {-b^2+4 a c}}-\frac {b \log \left (a+b x+c x^2\right )}{2 c^2} \]

[In]

Integrate[x^4/(a*x^2 + b*x^3 + c*x^4),x]

[Out]

x/c + ((b^2 - 2*a*c)*ArcTan[(b + 2*c*x)/Sqrt[-b^2 + 4*a*c]])/(c^2*Sqrt[-b^2 + 4*a*c]) - (b*Log[a + b*x + c*x^2
])/(2*c^2)

Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.07

method result size
default \(\frac {x}{c}+\frac {-\frac {b \ln \left (c \,x^{2}+b x +a \right )}{2 c}+\frac {2 \left (-a +\frac {b^{2}}{2 c}\right ) \arctan \left (\frac {2 c x +b}{\sqrt {4 a c -b^{2}}}\right )}{\sqrt {4 a c -b^{2}}}}{c}\) \(75\)
risch \(\frac {x}{c}-\frac {2 \ln \left (-8 a^{2} c^{2}+6 a \,b^{2} c -b^{4}-2 \sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, c x -\sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, b \right ) a b}{c \left (4 a c -b^{2}\right )}+\frac {\ln \left (-8 a^{2} c^{2}+6 a \,b^{2} c -b^{4}-2 \sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, c x -\sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, b \right ) b^{3}}{2 c^{2} \left (4 a c -b^{2}\right )}+\frac {\ln \left (-8 a^{2} c^{2}+6 a \,b^{2} c -b^{4}-2 \sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, c x -\sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, b \right ) \sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}}{2 c^{2} \left (4 a c -b^{2}\right )}-\frac {2 \ln \left (-8 a^{2} c^{2}+6 a \,b^{2} c -b^{4}+2 \sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, c x +\sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, b \right ) a b}{c \left (4 a c -b^{2}\right )}+\frac {\ln \left (-8 a^{2} c^{2}+6 a \,b^{2} c -b^{4}+2 \sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, c x +\sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, b \right ) b^{3}}{2 c^{2} \left (4 a c -b^{2}\right )}-\frac {\ln \left (-8 a^{2} c^{2}+6 a \,b^{2} c -b^{4}+2 \sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, c x +\sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}\, b \right ) \sqrt {-\left (4 a c -b^{2}\right ) \left (2 a c -b^{2}\right )^{2}}}{2 c^{2} \left (4 a c -b^{2}\right )}\) \(654\)

[In]

int(x^4/(c*x^4+b*x^3+a*x^2),x,method=_RETURNVERBOSE)

[Out]

x/c+1/c*(-1/2*b/c*ln(c*x^2+b*x+a)+2*(-a+1/2/c*b^2)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 235, normalized size of antiderivative = 3.36 \[ \int \frac {x^4}{a x^2+b x^3+c x^4} \, dx=\left [-\frac {{\left (b^{2} - 2 \, a c\right )} \sqrt {b^{2} - 4 \, a c} \log \left (\frac {2 \, c^{2} x^{2} + 2 \, b c x + b^{2} - 2 \, a c + \sqrt {b^{2} - 4 \, a c} {\left (2 \, c x + b\right )}}{c x^{2} + b x + a}\right ) - 2 \, {\left (b^{2} c - 4 \, a c^{2}\right )} x + {\left (b^{3} - 4 \, a b c\right )} \log \left (c x^{2} + b x + a\right )}{2 \, {\left (b^{2} c^{2} - 4 \, a c^{3}\right )}}, -\frac {2 \, {\left (b^{2} - 2 \, a c\right )} \sqrt {-b^{2} + 4 \, a c} \arctan \left (-\frac {\sqrt {-b^{2} + 4 \, a c} {\left (2 \, c x + b\right )}}{b^{2} - 4 \, a c}\right ) - 2 \, {\left (b^{2} c - 4 \, a c^{2}\right )} x + {\left (b^{3} - 4 \, a b c\right )} \log \left (c x^{2} + b x + a\right )}{2 \, {\left (b^{2} c^{2} - 4 \, a c^{3}\right )}}\right ] \]

[In]

integrate(x^4/(c*x^4+b*x^3+a*x^2),x, algorithm="fricas")

[Out]

[-1/2*((b^2 - 2*a*c)*sqrt(b^2 - 4*a*c)*log((2*c^2*x^2 + 2*b*c*x + b^2 - 2*a*c + sqrt(b^2 - 4*a*c)*(2*c*x + b))
/(c*x^2 + b*x + a)) - 2*(b^2*c - 4*a*c^2)*x + (b^3 - 4*a*b*c)*log(c*x^2 + b*x + a))/(b^2*c^2 - 4*a*c^3), -1/2*
(2*(b^2 - 2*a*c)*sqrt(-b^2 + 4*a*c)*arctan(-sqrt(-b^2 + 4*a*c)*(2*c*x + b)/(b^2 - 4*a*c)) - 2*(b^2*c - 4*a*c^2
)*x + (b^3 - 4*a*b*c)*log(c*x^2 + b*x + a))/(b^2*c^2 - 4*a*c^3)]

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 306 vs. \(2 (65) = 130\).

Time = 0.35 (sec) , antiderivative size = 306, normalized size of antiderivative = 4.37 \[ \int \frac {x^4}{a x^2+b x^3+c x^4} \, dx=\left (- \frac {b}{2 c^{2}} - \frac {\sqrt {- 4 a c + b^{2}} \cdot \left (2 a c - b^{2}\right )}{2 c^{2} \cdot \left (4 a c - b^{2}\right )}\right ) \log {\left (x + \frac {- a b - 4 a c^{2} \left (- \frac {b}{2 c^{2}} - \frac {\sqrt {- 4 a c + b^{2}} \cdot \left (2 a c - b^{2}\right )}{2 c^{2} \cdot \left (4 a c - b^{2}\right )}\right ) + b^{2} c \left (- \frac {b}{2 c^{2}} - \frac {\sqrt {- 4 a c + b^{2}} \cdot \left (2 a c - b^{2}\right )}{2 c^{2} \cdot \left (4 a c - b^{2}\right )}\right )}{2 a c - b^{2}} \right )} + \left (- \frac {b}{2 c^{2}} + \frac {\sqrt {- 4 a c + b^{2}} \cdot \left (2 a c - b^{2}\right )}{2 c^{2} \cdot \left (4 a c - b^{2}\right )}\right ) \log {\left (x + \frac {- a b - 4 a c^{2} \left (- \frac {b}{2 c^{2}} + \frac {\sqrt {- 4 a c + b^{2}} \cdot \left (2 a c - b^{2}\right )}{2 c^{2} \cdot \left (4 a c - b^{2}\right )}\right ) + b^{2} c \left (- \frac {b}{2 c^{2}} + \frac {\sqrt {- 4 a c + b^{2}} \cdot \left (2 a c - b^{2}\right )}{2 c^{2} \cdot \left (4 a c - b^{2}\right )}\right )}{2 a c - b^{2}} \right )} + \frac {x}{c} \]

[In]

integrate(x**4/(c*x**4+b*x**3+a*x**2),x)

[Out]

(-b/(2*c**2) - sqrt(-4*a*c + b**2)*(2*a*c - b**2)/(2*c**2*(4*a*c - b**2)))*log(x + (-a*b - 4*a*c**2*(-b/(2*c**
2) - sqrt(-4*a*c + b**2)*(2*a*c - b**2)/(2*c**2*(4*a*c - b**2))) + b**2*c*(-b/(2*c**2) - sqrt(-4*a*c + b**2)*(
2*a*c - b**2)/(2*c**2*(4*a*c - b**2))))/(2*a*c - b**2)) + (-b/(2*c**2) + sqrt(-4*a*c + b**2)*(2*a*c - b**2)/(2
*c**2*(4*a*c - b**2)))*log(x + (-a*b - 4*a*c**2*(-b/(2*c**2) + sqrt(-4*a*c + b**2)*(2*a*c - b**2)/(2*c**2*(4*a
*c - b**2))) + b**2*c*(-b/(2*c**2) + sqrt(-4*a*c + b**2)*(2*a*c - b**2)/(2*c**2*(4*a*c - b**2))))/(2*a*c - b**
2)) + x/c

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^4}{a x^2+b x^3+c x^4} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x^4/(c*x^4+b*x^3+a*x^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.96 \[ \int \frac {x^4}{a x^2+b x^3+c x^4} \, dx=\frac {x}{c} - \frac {b \log \left (c x^{2} + b x + a\right )}{2 \, c^{2}} + \frac {{\left (b^{2} - 2 \, a c\right )} \arctan \left (\frac {2 \, c x + b}{\sqrt {-b^{2} + 4 \, a c}}\right )}{\sqrt {-b^{2} + 4 \, a c} c^{2}} \]

[In]

integrate(x^4/(c*x^4+b*x^3+a*x^2),x, algorithm="giac")

[Out]

x/c - 1/2*b*log(c*x^2 + b*x + a)/c^2 + (b^2 - 2*a*c)*arctan((2*c*x + b)/sqrt(-b^2 + 4*a*c))/(sqrt(-b^2 + 4*a*c
)*c^2)

Mupad [B] (verification not implemented)

Time = 8.64 (sec) , antiderivative size = 172, normalized size of antiderivative = 2.46 \[ \int \frac {x^4}{a x^2+b x^3+c x^4} \, dx=\frac {x}{c}+\frac {b^3\,\ln \left (c\,x^2+b\,x+a\right )}{2\,\left (4\,a\,c^3-b^2\,c^2\right )}-\frac {2\,a\,\mathrm {atan}\left (\frac {b}{\sqrt {4\,a\,c-b^2}}+\frac {2\,c\,x}{\sqrt {4\,a\,c-b^2}}\right )}{c\,\sqrt {4\,a\,c-b^2}}+\frac {b^2\,\mathrm {atan}\left (\frac {b}{\sqrt {4\,a\,c-b^2}}+\frac {2\,c\,x}{\sqrt {4\,a\,c-b^2}}\right )}{c^2\,\sqrt {4\,a\,c-b^2}}-\frac {2\,a\,b\,c\,\ln \left (c\,x^2+b\,x+a\right )}{4\,a\,c^3-b^2\,c^2} \]

[In]

int(x^4/(a*x^2 + b*x^3 + c*x^4),x)

[Out]

x/c + (b^3*log(a + b*x + c*x^2))/(2*(4*a*c^3 - b^2*c^2)) - (2*a*atan(b/(4*a*c - b^2)^(1/2) + (2*c*x)/(4*a*c -
b^2)^(1/2)))/(c*(4*a*c - b^2)^(1/2)) + (b^2*atan(b/(4*a*c - b^2)^(1/2) + (2*c*x)/(4*a*c - b^2)^(1/2)))/(c^2*(4
*a*c - b^2)^(1/2)) - (2*a*b*c*log(a + b*x + c*x^2))/(4*a*c^3 - b^2*c^2)